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a b s t r a c t

Process Analytical Technology (PAT) is playing a central role in current regulations on pharmaceutical

production processes. Proper understanding of all operations and variables connecting the raw

materials to end products is one of the keys to ensuring quality of the products and continuous

improvement in their production. Near infrared spectroscopy (NIRS) has been successfully used to

develop faster and non-invasive quantitative methods for real-time predicting critical quality attributes

(CQA) of pharmaceutical granulates (API content, pH, moisture, flowability, angle of repose and particle

size). NIR spectra have been acquired from the bin blender after granulation process in a non-classified

area without the need of sample withdrawal. The methodology used for data acquisition, calibration

modelling and method application in this context is relatively inexpensive and can be easily

implemented by most pharmaceutical laboratories. For this purpose, Partial Least-Squares (PLS)

algorithm was used to calculate multivariate calibration models, that provided acceptable Root Mean

Square Error of Predictions (RMSEP) values (RMSEPAPI¼1.0 mg/g; RMSEPpH¼0.1; RMSEPMoisture¼0.1%;

RMSEPFlowability¼0.6 g/s; RMSEPAngle of repose¼1.71 and RMSEPParticle size¼2.5%) that allowed the appli-

cation for routine analyses of production batches. The proposed method affords quality assessment of

end products and the determination of important parameters with a view to understanding production

processes used by the pharmaceutical industry. As shown here, the NIRS technique is a highly suitable

tool for Process Analytical Technologies.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Pharmaceutical production processes comprise a number of
steps that involve a series of operations requiring validation and
adherence to strict Standard Operating Procedures (SOPs). Quality
Assurance, which encompasses the decisions leading to the
successful completion of each step in a process, relies on off-line
testing to assess the quality of a product at the end of each step,
as well as that of the end product. This takes a long time that is
further increased by the manufacturing cycle time. In addition,
because this approach considers neither risk assessment nor risk
management, it does not ensure the complete absence of quality
ll rights reserved.
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defects in the product. This problem was addressed by Process
Analytical Technology (PAT) initiative of the United States Food
and Drug Administration (US-FDA) [1] aimed at fostering the
development of more technically and scientifically rigorous pro-
duction processes by the pharmaceutical industry [2].

The PAT approach, which relies on scientific knowledge and
risk analysis, affords the design and development of efficient,
continuously controlled processes. In this way, it ensures a pre-
set level of quality at the end of the manufacturing process. PAT
can therefore be regarded as a joint venture of analytical chemical
science and pharmaceutical technology [3–5].

Near infrared spectroscopy (NIRS) is one of the most flexible
vibrational spectroscopic techniques for the analysis of pharmaceu-
tical products and also one of the most useful tools for the industrial
implementation of PAT on account of its affording at-line, in-line
and on-line measurements by virtue of its ability to measure a
number of physical and chemical properties of samples. Some of the
better known uses of NIRS in the production of solid pharmaceutical
forms include chemical raw material identification [6], blend uni-
formity assessment [7–10], granulation monitoring [11], roller
compaction monitoring [12], drying end-point determination [13]
and coating end-point and uniformity determinations [14].
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Using NIRS in PAT projects has a number of advantages
including its non-destructive nature and its ability to provide
immediate results, which affords real-time analysis. Near infrared
spectra are influenced by some physical properties of the samples,
but the effects can be suppressed or minimised by using an
appropriate spectral pretreatment; also, the results must be
calibrated against a reference technique such as HPLC, but a
recent method allows the easy construction of NIR calibration
models for quantifying the API and excipients in a formulation
without the need for a reference method [15].

In this work, we developed a method for the non-invasive
determination of the critical quality attributes (CQAs) of a
pharmaceutical granulate with a view to reducing its manufactur-
ing time and obtaining a better knowledge of the influence of
some variables of the production process. At present, the deter-
mination of CQAs for a granulate involves withdrawing a sample
from the bin blender in an ISO 8 classified area and submitting it
to the laboratory for chemical analysis. In addition to the need for
an ISO 8 area and its staffing, this entails taking some health
cautions, which delays the sampling process. Also, the conven-
tional methodologies used for this purpose are time-consuming,
which additionally delays the obtainment of quality information
for timely decision-making (specifically, whether a given produc-
tion batch should be released for the next step of the process,
which is usually packaging).

This PAT methodology was used to determine the target CQAs
(API content, pH and moisture content as primary attributes)
from NIR spectra acquired in the bin blender after the granulation
process in a non-classified area without the need of sample
withdrawal. Also, it is intended to evaluate the determination of
other physical variables, such as flow-related properties (flow-
ability and angle of repose) and particle size-related parameters
(o125, 125–250 and 4250 mm fractions) that can eventually
influence the quality of the end product.
2. Materials and methods

2.1. Pharmaceutical formulation

The formulation used was a solid form commercially available in
2 g bags and containing an amount of active pharmaceutical
ingredient (API) of 50 mg per gram of product (5 wt%), sucrose as
major excipient (90 wt%), citric acid as minor excipient (1.5 wt%),
macrogol 400 (0.4 wt%), maltodextrin (0.8 wt%) and orange
flavouring (2.1 wt%). The API (Nimesulide) is a non-steroidal anti-
inflammatory drug (NSAID) with analgesic and antithermal action.

2.2. Calibration samples used for PLS models

A total of eight multivariate calibration models were constructed
by using the Partial Least-Squares Algorithm (PLS1) for the following
CQAs: (1) API content; (2) pH; (3) moisture content; flow-related
Table 1
Correlation coefficients between concentrations of the powder samples components.

Compounds Correlation coefficients

API Sucrose Citric acid Maltodextrin

API 1

Sucrose �0.97 1

Citric acid 0.16 �0.24 1

Maltodextrin �0.17 0.11 �0.14 1

Orange flavouring �0.28 0.15 �0.42 �0.03

a The missing 4 mg/g of macrogol to complete the 100% of formulation is added as
properties (4) flowability and (5) angle of repose; and particle size
(6) 4125 mm, (7) 125–250 mm and (8) 4250 mm.

The models used to determine the API and pH were constructed
from the spectra of 55 powder mixtures of the formulation
ingredients prepared in the laboratory by weighing on an analytical
balance and mixed in a Turbula solid blender. The composition for
the sample set was established by using a D-optimal design,
modifying the concentrations of the five components of the for-
mulation (API, sucrose, citric acid, maltodextrine and orange fla-
vouring) in order to minimise correlation between concentrations.
The concentration range used and the matrix of correlations
between components in the mixtures are shown in Table 1. As
can be seen, correlation was minimal except for the API and sucrose,
the high concentrations of which (95% of the mixture in combina-
tion) precluded lowering the correlation level. Sample set was split
in two subsets, for calibration and validation purposes.

The models for moisture, flow-related properties and particle-
size related properties were constructed by using the spectra for
samples from 12 different production batches.

For the moisture model, a subset of samples was dried in a
laboratory-drying oven and another subset was wetted in a wet
chamber by placing it next to a vessel with water in a closed
enclosure in order to expand the calibration range with respect to
the nominal value. Sufficient amount of sample to determine
moisture by the reference method and recording the spectrum
was extracted every hour to cover a suitable range of moisture.

The granulate samples used to construct the models for
particle size and flow properties were sieved to retain three
different size fractions which were mixed in appropriate propor-
tions in order to expand the calibration range for flowability.

2.3. Calibration modelling with the Sp method

The API and pH calibration models were constructed by using
the method proposed by Blanco and Peguero [15], except that
data were obtained from SNV-processed rather than direct
absorbance data. Briefly, the method involves calculating the
process spectrum, Sp, which should contain the variability of the
production process (Eq. 1). These changes during production
process are reflected in the spectra as a spectral offset, scaling,
etc. as a result of the granulation step. Consequently Sp spectrum
could be different for different granulation behaviour:

Sp ¼ St2Stab_ref ð1Þ

where St is the spectrum for a production sample and Stab_ref the
reference spectrum, corresponding to a powder laboratory mix-
ture containing the API and excipients at their nominal concen-
trations (see Fig. 1).

2.4. Granulation

Granulation was done in a GLATT WSG300 fluid bed system
(FBS) where the raw materials (API and excipient) were introduced
Concentrations

Orange flavouring Range (mg/g) Nominal approx. (mg/g)a

34–66 50

890–921 900

12–18 15

5–9 7

1 17–28 21

solution during granulation process.



Fig. 1. SNV spectra for a laboratory powder mixture, a granule production sample

(both containing the same concentration of each component) and a process

spectrum.
Fig. 2. Measuring schema for non-invasive NIR spectra recording in the bin.
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by aspiration and an ascending flow or hot air continuously
agitated the load in order to ensure uniform blending prior
to granulation. After the binder solution (an aqueous solution
of macrogol 400, sucrose and maltodextrin) was added and the
granulate formed, the hot air flow was continued until the required
moisture level was reached. The overall process time was about
255 min. The granulate was transferred to stainless steel bin
blenders for mixing with an extra-granular excipient and the
flavouring agent which was not added during granulation in order
to avoid its loss through drying. Once the mixing process was
finished, a sample was withdrawn to determine the API by HPLC
and the result was used to ascertain whether the batch concerned
was released for subjection to the next steps of the manufacturing
process (dosage and packaging) or held in the bin blender for
further agitation to complete uniformity. The analytical determi-
nation of the API can take several hours, which, in addition to
withdrawing samples in a classified zone, considerably delays the
manufacturing process.
2.5. Reference methods

All methods used to obtain the reference values were pre-
viously validated by Laboratorios Menarini and are routinely used
by the control laboratory for the analysis of production batches.
The API (Nimesulide) was quantified on an HPLC instrument from
Agilent Technologies (Santa Clara, CA, USA) furnished with a
Lichrospher 100 RP-18 column. The mobile phase was a 40:60
(v/v) mixture of 0.03 M acetic acid and methanol, and the spectral
wavelength of 300 nm. pH measurements were directly made in
2% (w/v) solutions of the granulate, using a model 691 pH-meter
from Metrohm AG (Herisau, Switzerland). Moisture contents were
determined by using the loss-on-drying method on a LJ16
Moisture Analyzer Balance from Mettler Toledo Intnal., Inc.
(Greifensee, Switzerland), each sample being heated at 90 1C to
constant weight for 5 min.

Particle size was determined by sieving various granulate
batches through a Prufsieb Jel 200 sieve shaker (Hosokawa,
Augsburg, Germany) in order to obtain three particle fractions:
4125, 125–250 and 4250 mm.

Flowability and angle of repose were determined with a
Powder Characterisation Instrument GmbH PTG-2 from Pharma
Test AG (Munich, Germany).
2.6. Near infrared equipment

Near infrared spectra were recorded in the bin blender, using a
Portable LabSpec Pro 2500 NIR spectrophotometer from ASD, Inc.
(Boulder, CO, USA). Measurements were made in the reflectance
mode, using a 3 mm thick sapphire window 2 cm in diameter that
was inserted into a bin blender cap previously adapted for
insertion of a probe that was connected to the spectrophotometer
via a 3 m long optical fibre. The experimental set-up used is
depicted in Fig. 2.

The spectra for the laboratory calibration samples were
recorded by using an identical probe. An appropriate amount of
sample was placed on the bin blender cap in such a way as to
completely cover the sapphire window.

All NIR spectra were acquired with the aid of the software
Indico Pro 5.2, also from ASD, Inc. Each spectrum was the average
of 32 scans spanning the range 1000–2500 nm at 1 nm intervals.

2.7. Spectral processing

The spectral treatments used included Standard Normal Variate
(SNV) transformation, first and second Savitzky–Golay derivatives
with a moving window of 11–21 points, and combinations of
SNV with derivatives and Principal Component Analysis (PCA).
Models were constructed by full cross-validation and validated
against an external data set. PLS models were developed with
the software The Unscrambler v. 9.8, from CAMO (Trondheim,
Norway). Unscrambler On-line v. 2.2, also from CAMO, was used to
apply the ensuing models to the manufacturing process in order to
predict physical and chemical CQAs. The quality of the models was
assessed in terms of the Root Mean Square Error (RMSE):

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rn

i ¼ 1ðy
pred
i �yref

i Þ
2

n

s
ð2Þ

where n is the number of samples, yref the reference value and ypred

the NIR predicted value.
3. Results and discussion

The sequence of steps during the granulation process studied,
which involves six steps (steps 1 and 2 are not described here as
they have been examined in another study), is illustrated in Fig. 3.



Fig. 3. Steps for current granulation manufacturing process and for the new NIR

method implementation in routine. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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As can be seen, the scheme shows the conventional (step 4) and
proposed strategy (in dotted blue lines) for quality assessment of
blending step, the most interesting step for our purposes, which
can be substantially expedited by using the proposed strategy to
real-time to ensure that the blend is uniform. In a routine process,
the average time elapsed between sample collection (step 4) for
analysis to delivery of the results is typically 6 h (in a quality
control laboratory not exclusively dedicated) and depends on
various external factors such as the availability of staff and an ISO
8 classified area for sampling, as well as the time during which
batches are stocked unprocessed. Obtaining accurate analytical
results in real-time in this step allows one to assure that the
product is suitable for subjection to the following last steps of the
process (dosage and packaging) or else be corrected as required
prior to release (with extra blending time for example). The
physical and chemical information provided by PLS models for
this step of the process is much wealthier than that obtained with
the conventional methodology and takes only a few seconds to
acquire.

3.1. Development of the calibration model

The samples to be included in the calibration and validation
sets for constructing our multivariate calibration models were
selected by using a scatter plot for the first two scores of a PCA
[16] to ensure that the calibration samples would encompass the
whole variability in the prediction samples; if the available
samples failed to fulfil this condition, then the sample set had
to be expanded with selected or properly prepared samples.
Determining the API content and pH in the bin blender required
constructing PLS models from the spectra for laboratory powder
samples, which were combined with the process spectrum (Sp) to
incorporate process variability in the calibration and prediction
sets. For example, whether the sample set combined with Sp

contained the process variability was assessed by PCA of the
calibration set for the API and projecting the scores for the
external validation samples. As can be seen from Fig. 4a, the first
two principal components (PCs) explained 87% of the total
variance. PC1 (60%) was associated to processes variability
including the spectrum process (Sp), separating the samples into
two clusters with similar Sp. PC2 and PC3 (27% and 7% respec-
tively) were associated to changes in the concentration of the API.
As can be seen in the example of Fig. 4a, the calibration samples
encompassed the prediction samples, showing that the samples
are suitable for constructing the PLS model to quantify API.
Actually, these NIR methods will be used in the bin blender,
consequently it is necessary to ensure that the calibration
samples collect variability of production batches. For example,
whether the sample set combined with Sp contained the process
variability was assessed by PCA of the calibration set for the API
and the scores were projected for the production batches. As can
be seen from Fig. 4b, the first two principal components explained
87% of the total variance; also, the production samples were
included in the set of laboratory samples combined with the
process spectrum, which confirmed that the expanded calibration
set encompassed the variability in the production samples and
was hence appropriate for constructing the models. The narrow
concentration range spanned by the production samples (75%
around the nominal value) is consistent with their clustering in
the middle of the graph; by contrast, the laboratory samples
spanned a wider concentration range and their scores were more
scattered along the PC2 axis.

Fig. 4c shows the first two PCA loadings of the calibration
samples. If these loadings are compared with a production batch
and API spectra (Fig. 4e) we can clearly see that the first loading
shows characteristic bands of production batch spectrum, espe-
cially in the range 1400–1600 and 2000–2100 nm (characteristic
bands of sucrose, see Fig. 4f). In Fig. 4c it can be observed that the
second loading is related to API (Fig. 4e) mainly in the bands
around 1500, 1650, 1900, 2100–2300 nm.

Table 2 shows the figures of merit of the PLS models for
primary CQAs. The three models required three PLS factors each
to explain 99% of the variance with virtually the entire wave-
length range—the zone from 2300 to 2500 nm was excluded
owing to the high noise in the derivative spectra. As an example,
Fig. 4d shows the three loadings of PLS model for API which
explained 99.4% of variance. As can be seen, the first two loading
(86.8% and 12.1%) are closely related to the API, especially in the
bands around 1150, from 1500 to 1700 and 2100–2300 nm
(Fig. 4f). The third loading (0.5%) is related principally to sucrose,
especially in the bands around 1300–1450 and 1900–2100 nm
(Fig. 4f). With respect to the PLS model for pH, Fig. 5a shows the
first two loadings explaining 95.5% of the variance. As can be seen,
the first loading is closely related to the citric acid (Fig. 5b),
especially in the bands 1420, 1650–1750, and 2025–2090 nm. The
second loading seems to be related to certain bands of API
(Fig. 5b), mainly around 1675, 1834, and 2150–2210 nm. It is
important to clarify that calibration samples for pH contained
principally variable amounts of citric acid, but as we have seen it
is not the only component related to pH, since the API also
contributes to pH changes, consequently pH depends on the



Fig. 4. Graphic details of multivariate analysis of samples set to develop NIR method to quantify API. (a) PCA: projection of validation samples in scatter plot of scores from

PCA of calibration samples, (b) PCA: scatter plots of production samples and laboratory calibration samples (powder mixturesþspectrum process), (c) PCA: plot of first two

loadings explaining 87% of variance. (d) PLS: three first loadings of PLS model for API, (e) PCA: production batch and API spectra, and (f) PLS: API and sucrose (major

excipient) spectra. Spectral mode used in all case was SNVþ1st derivative in 1100–2300 nm range.

Table 2
Figures of merit of the PLS models constructed for primary CQAs.

Set Characteristics API (mg/g) pH Moisture (%)

Calibration Set No. of samples 25 39 23

Spectral pre-treatment SNVþ1st derivative SNVþ2nd derivative 1st derivative

Wavelength range (nm) 1000–2300 1000–2260 1300–1500

1850–2050

Calibration rangea 34.1–66.2 2.9–3.3 0.10–1.21

Nominal values (NOC)a 50.072.5 3.070.5 o0.5

Number of PLS factors 3 3 3

Explained variance (Y) (%) 99.4 99.1 97.8

Regression Yref vs. YNIR

Slope7CIa¼0.05 0.9970.03 0.9970.03 0.9870.07

Offset7CIa¼0.05 0.3171.72 0.0370.10 0.0170.03

RMSECa 0.68 0.01 0.04

Prediction set Prediction rangea 40.8–56.2 3.03–3.10 0.11–0.70

No. of samples 19 12 9

RMSEPa 1.0 0.1 0.1

NOC¼Normal Operating Conditions.

CI¼Confidence interval (a¼0.05).

RMSEC/P¼Root Mean Square Error of Calibration/Prediction.
a Results are expressed in their respective units.
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Fig. 5. Details of PLS models for pH and flowability. (a) Two first loadings of PLS

model for pH, (b) SNVþ2nd derivative spectra of citric acid and (c) 1st derivative

spectra of calibration set used to construct PLS flowability model.
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proportion of these two substances. The model for moisture
spanned the wavelength regions containing the typical bands
for water (see Table 2). All models were validated against an
external set of prediction samples not used for calibration and all
exhibited acceptable prediction errors.

Table 3 shows the figures of merit of the PLS models for
secondary CQAs. These models required an increased number to
explain 99% of the variance relative to those for primary CQAs.
Because the determination of physical parameters by NIRS cannot
rely on a characteristic absorption band, the models spanned the
whole wavelength range. Although they required the same
number of PLS factors, the models for flowability and angle of
repose provided smaller errors than those for particle size. As an
example, Fig. 5c shows the spectra of the calibration set used to
construct the PLS model for flowability, as can be seen there is a
variation along the spectrum, however there are bands related to
changes in flowability, especially around 1400, 1580–1640 and
2000 nm (by using Jack-knife criterion to evaluate significance of
regression coefficients, we found two important regions at 1380–
1613 and 1980–2071 nm). As can be seen, the bands of water are
situated between these ranges, as a consequence we can affirm
that the moisture content has an effect on the flowability and
consequently on the angle of repose. Similar results were found
by Otsuka [17] and Sarraguca et al. [18] in studies about physical
properties by using NIRS. By the use of Jack-knife criterion,
significant ranges for angle of repose PLS loadings were found at
1126–1445 and 1880–2332 nm. On the other hand, PLS loadings
for particle size model (plot not shown) were similar to the mean
calibration spectrum, because when particle size increases a
positive baseline displacement is observed on the spectra.

The samples used to expand the flowability and particle size
range were mixtures containing variable proportions of granulate
in different particle sizes. These samples were used to determine
the correlation coefficient between the two properties. As
expected – both parameters are measures of the same property
– flowability and the angle of repose were highly correlated
(R¼�0.96); also, both were highly correlated with the proportion
of fine particles (o125 mm, R¼�0.93) (see Table 4).

The proposed NIR method to quantify API was validated for
use in the routine analysis by using the model obtained. Valida-
tion was based on the guidelines of the International Conference
on Harmonisation (ICH) [19] and included selectivity, linearity,
accuracy and robustness.

The selectivity of an NIR method is established by the use of
spectral libraries, which allow the accurate identification of the
pharmaceutical preparation as a combination of API and excipi-
ents. The identification criterion used was the correlation coeffi-
cient (CorrCoef), with a threshold of 0.98. Spectral pre-treatment
used was second-derivative mode over the wavelength range of
1100–2200 nm. All production batches were positively identified
(CorrCoef40.98) and every pure component in the formulation
was accurately discriminated at an identification level above the
threshold (CorrCoefo0.98). Table 5 shows the identification
values.

The application of proposed method was found to meet all the
requirements in the validation guideline, which confirms its
suitability for use as a routine analytical method in the pharma-
ceutical industry. Table 5 shows the most salient results for the
validation procedure of the application of NIR method for API in
the pharmaceutical process. The application in routine for the rest
of the NIR methods (pH, moisture, flowability, angle of repose and
particle sizes) is in the process of validation. This procedure took
some time because it is necessary to sieve the samples from
different batches and then analyse the fractions using the refer-
ence. However, the robustness values of all NIR methods were
evaluated in several production batches such as described below.

3.2. Validation of robustness for proposed methods. Non-invasive

determination of CQAs in the bin blender

The robustness for above-described PLS models were validated
by using them to determine the CQAs for fifty industrial batches
and assess their robustness in routine analyses. To this end, a total
of six NIR spectra per batch were recorded as described in Section
2.6 and averaged. The results thus obtained were compared with



Table 3
Figures of merit of the PLS models constructed for secondary CQAs.

Set Characteristics Flow properties Particle size parameters

Flowability (g/s) Angle of repose (deg.) o125 mm (%) 125–250 mm (%) 4250 mm (%)

Calibration set No. of samples 17 15 10 9 9

Spectral pre-treatment 1st Derivative SNVþ1st derivative 1st Derivative SNV SNV

Wavelength range (nm) 1100–2330 1000–2400 1000–2500 1000–2400 1000–2400

Calibration rangea 4.4–9.3 30.3–36.3 16.6–25.0 35.5–43.5 37.1–48.0

Number of PLS factors 5 6 5 5 6

Explained variance (Y) (%) 97.9 99.6 99.9 99.4 99.3

Regression Yref vs. YNIR

Slope7CIa¼0.05 0.9870.08 1.0070.04 1.0070.02 0.9970.07 0.9970.07

Offset7CIa¼0.05 0.1570.56 0.1471.28 0.0170.31 0.2272.60 0.2672.99

RMSECa 0.18 0.11 0.04 0.18 0.24

Prediction set No. of samples 23 29 4 6 5

Prediction rangea 5.9–7.4 30.8–35.1 18.4–19.7 37.9–42.0 40.9–46.0

RMSEPa 0.6 1.7 2.5 2.4 2.5

CI¼Confidence interval (a¼0.05).

RMSEC/P¼Root Mean Square Error of Calibration/Prediction.
a Results are expressed in their respective units.

Table 4
Correlation coefficients of the physical parameters.

o125 mm 125–250 mm 4250 mm Flowability (g/s) Angle of repose (deg.)

o125 mm 1

125–250 mm �0.50 1

4250 mm �0.50 �0.50 1

Flowability (g/s) �0.93 0.56 0.37 1

Angle of repose (deg.) 0.95 �0.59 �0.36 �0.96 1

Table 5
Validation parameters for the API quantitation in pharmaceutical process by using

the proposed NIR method.

Compound Coefficient correlation

Selectivity Production batch 0.998

Powder sucrose 0.978

Crystal sucrose 0.955

Maltodextrin 0.239

Orange aroma 0.200

Citric acid 0.064

Nimesulide �0.061

Threshold 0.98 (positive identification: id results 40.98)

Parameter Result

Linearity n 9

Concentration range (mg/g) 36.3–60.7

Intercept 2.2372.32

Slope 0.9670.05

R 0.991

Accuracy n

Average difference (mg/g) 9

S.D. 0.55

texp 1.42

tcrit 1.17

Repeatability Replicates 2.31

Mean NIR (mg/g)

CV (%) 6

Robustness n 50

texp 1.50

tcrit 2.01

Table 6
Non-invasive NIR method robustness for critical quality attributes (CQAs).

Parameter REFMean NIRMean RESMean RMSEP tobs

Primary CQAs API (mg/g) 49.83 50.44 0.61 1.34 1.50

pH 3.09 3.08 �0.01 0.03 0.60

Moisture (%) 0.21 0.24 0.03 0.05 1.70

Secondary CQAs Flowability (g/s) 6.78 6.82 0.04 0.57 0.31

Angle of repose

(deg.)

33.36 33.04 �0.32 0.94 0.99

o125 mm (%) 19.18 19.85 0.67 1.46 1.70

125–250 mm (%) 38.51 38.39 �0.12 1.22 0.27

4250 mm (%) 42.32 41.84 �0.48 1.39 1.00

tcrit¼2.01 (a¼0.05 and 49 degrees of freedom). tobs lesser than tcrit indicates two

means are not statistically different.

REFMean refers to mean of the reference values and NIRMean refers to mean of the

predicted values by NIR model for 50 production batches.

RESMean refers to mean of the residuals values and RMSEP refers to the root mean

square error of prediction.
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the reference values provided by the routine analytical method
applied to each batch, using a paired t-test at the 95% confidence
level. As can be seen from Table 6, there were no statistical
differences between the mean NIR predicted values and the
reference values (tobsotcrit). This confirms that the models
provided accurate results from non-invasive measurements made
in the bin blender.

These results warrant using PLS models in routine analyses
with a view to assessing their long-term robustness by applica-
tion to an increased number of batches. The most salient feature
of this new NIR methodology is that it affords the quantitation of
a greater number of both physical and chemical properties in a
product from a single NIR spectrum, thereby enabling routine
determinations which were formerly done on an individual,
anecdotal basis.
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4. Conclusions

The proposed experimental design, which requires no altera-
tion of the operational procedure, allows the non-invasive and
real-time determination of critical quality attributes (CQAs) for
pharmaceutical granulates. Our methodology provides a deeper
knowledge of the product as it allows the whole physico-chemical
information it contains to be extracted in real time (a few
seconds) and with no added effort. The information thus obtained
can be used to expedite decisions, which formerly required hours,
even in the absence of a comprehensive knowledge of the
applicable quality specifications. The proposed approach facil-
itates quantitative assessment of granulation and blending uni-
formity. Also, the eight PLS models used allow the most salient
properties of the granulate to be determined in real time with
measurement in a non-classified area. The operational simplicity
of method makes it suitable to be executed by non-specialists
(i.e, an operator of production). Consequently, NIR spectroscopy is
a useful tool for Process Analytical Technology (PAT).
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